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unprecedented computational speeds. The drive to-
wards APIs as the central point of algorithmic magic 
was a paradigm shift for ML engineers. Before 
ChatGPT and Open AI’s GPT 3.5 model release, ML 
engineers were guided by traditional ML practices. 
These typically involved rigorous data preprocess-
ing, model creation through algorithmic selection, 
parameter initialization, hyperparameter tuning, and 
performance evaluation (outside computer vision 
use cases). After November 2022, this all changed.

Winter 2022 was a curious time for ML teams. Most 
teams tried to deconstruct the ChatGPT interface 
for their use cases and make sense of the GPT API 
calls. Others binged on YouTube tutorials to under-
stand the Transformer model and attention-based 
modeling approach. Others read new gen AI model 
development releases on Arxiv.org and played with 
various LangChain and OpenAI tutorials. Outside 
the ML community, only some individuals in man-
agement took heed of what was about to happen. 

Enter the Hype Machine

In the spring of 2023, the marketing machine took 
over. Companies like Google began to espouse 
their managed gen AI solutions in Vertex AI. Am-
azon soon followed suit by implementing its own 
gen AI management platform, Bedrock. Azure 
decided to buy their way in with a partnership with 
Open AI. Suddenly, every company asked them-
selves one question: “How can I leverage large lan-
guage models (LLMs) to increase revenue?” This 
was followed by the familiar chime of consultant 
pitches offering slide decks of humanoid robots to 
display what customers wanted to see. Every way 
you looked, the title “Data Scientist” was replaced 
with “Gen AI” on LinkedIn. 

Behind the scenes, hiring teams scrambled. Strate-
gic AI hires moved budgets away from ML projects 
into anything that said gen AI. The core focal point 

The ML/AI Shift

Over the past two years, we have observed 
a significant transformation in companies’ 
deployment of machine learning products.    
What was once known as machine learning   
(ML) is now frequently termed artificial 
intelligence (AI), a shift that has not gone 
unnoticed by engineering teams. Almost 
overnight, data scientists and ML engineers 
updated their LinkedIn profiles to reflect their 
new titles as “AI engineers.”1 Executives and 
hiring managers are increasingly grappling 
with the rapid evolution of AI development, 
particularly generative AI (gen AI) and the 
specialized skills it demands. This article aims  
to unravel these complexities, equipping 
decision-makers with the necessary insights    
to make strategic, informed AI hires.

What is the Difference Between ML and  
AI Teams?

The transition from ML team to AI team has been 
bubbling under the surface for some time. The 
release of ChatGPT instigated a coup in budget 
allocation between traditional ML engagements         
and investigative AI projects. The impact was im-
mediate and far-reaching. Companies began to run 
POCs/POVs (proof of concept/value) to demon-
strate the feasibility of harnessing pre-trained  
OpenAI GPT API model calls into their enterprise 
systems. However, as these POCs and demos 
progressed, it quickly became apparent that a new 
set of technical skills was required to bring these 
models to deployment. 

The pivotal moment occurred following Google’s 
2017 seminal paper, Attention Is All You Need.  
After 2017, large language models became acces-
sible via API calls, enabling the processing of vast 
amounts of data through transformer models at 

1 This article defines ML teams in the context of traditional ML projects. These may include fraud detection, forecasting, anomaly detection, basic NLP tasks, and derivatives of deep 
neural networks. However, the scope is more comprehensive than these projects alone. References to transfer learning on an ML team imply downloading the weights of a pre-trained 
model for a new domain use case. In contrast, the AI team is represented as those who work with pre-trained algorithms via API connections to the hosting platform.
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team on AWS SageMaker or Google’s Vertex AI. 
Some have a rough implementation of MLOps 
where proper CI/CD practices are enforced to 
reduce the clutter around GitHub PRs. Even in the 
MLOps world, there are various levels of maturity. 
(Cloud Architecture Center: Automation pipelines in 
machine learning)

How Have Things Changed?

Modern AI systems, notably gen AI, rely on pre-
trained algorithms called “foundation models” 
accessed via an API. Unless your company has 
tens of millions of dollars and access to a world-
class collection of documents, **cough cough** 
Bloomberg **cough cough**, you aren’t creating an 
in-house foundation model. This is why the industry 
has leaned so heavily on API calls to foundation 
models. However, after the API call, companies are 
flummoxed by an inability to provide the right tools 
to integrate the API into a deployable use case. 

Scalable ML deployments are centered around 
the ML engineer and coordination with the MLOps 
solutions architect (or engineer). In contrast, AI 
system deployment in computer vision or gen AI 
focuses on individuals who can deploy and scale an 
API connection. Rather than building ML algorithms, 
these new AI teams can focus on building appli-
cations and workflows powered by the API. These 
new AI engineers must know the ins and outs of 
open-source tools such as LangChain, LlamaIndex, 
or Semantic Kernel. They are called to orchestrate a 
dance between prompts, agents, and service calls, 
wrapping them into a Dockerized package ready for 
shipment.

The AI engineer’s new domain focuses on software 
engineering, specifically how to integrate various 
open and closed-source systems. Whereas the 
ML engineer works with structured data (mostly) 
and relies on the data engineer to query and pull 
data, the AI engineer needs to leverage a storage 

moved from “How do I create an algorithm that can 
predict this thing?” to “How can I borrow an algo-
rithm that can generate this thing?” The paradigm 
shifted, and AI teams became the champions of 
executive hiring decision-making. 

How Have Things Worked Historically?

So, what is involved in an AI team, and how does 
it differ from how we used to hire ML teams? As 
previously stated, the ML team is structured around 
creating a well-tuned algorithm that can generalize 
about future scenarios, be it making predictions 
about revenue, movie recommendations, or whether 
this image is a hot dog. ML engineering has been  
the purview of deep expertise in creating an  
algorithm with a low error rate. 

Traditionally, Data Engineers support ML teams 
and move data from one place to another, ensure 
its validity and structure, and help maintain  
a steady flow of ones and zeros into the algorithm. 
The Data Scientist creates data narratives based 
on statistical principles to inform the model-build-
ing process, engineer new informative features, 
and work hand-in-hand with the ML engineer. The 
ML engineer takes those features and builds a 
generalized model of the specified environment. 
Finally, the ML Operations (MLOps) Engineer 
ensures that the model is deployable and scalable 
and has the necessary pipelines to automate any 
changes that need to happen in production.2

However, not all companies have this level of cor-
porate drive or engineering community cohesion to 
adopt new technologies. At the same time, many 
companies don’t have the data foundations even 
to begin looking at AI solutions. The main point 
is companies are at different levels of an AI/ML 
maturity curve. Some are merely leveraging Jupyter 
Notebooks on a local machine. Others are spinning 
up a managed ML environment. Some are making 
these managed AI services accessible to the entire 
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2  Not all companies have the resources to deploy open-source solutions tailored to their specific use case. In my experience, I have seen companies with data science teams in the 
double digits effectively coordinate shared features with open-source feature stores, create reproducible model registries while leveraging multiple cloud services, and create adoption 
frameworks that drew these various data science and ML teams to follow this new tool. Uber’s Michelangelo 3.0 is probably the most valiant effort publicly written about on their 
engineering blog. 

https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://www.bloomberg.com/company/press/bloomberggpt-50-billion-parameter-llm-tuned-finance/
http://Uber’s Michelangelo 3.0 


engineers, which is why most AI engineers come 
from a heavy software engineering background. As 
discussed, the switch from building ML models to 
calling an API for a pre-trained model has driven AI 
teams to adopt software engineering methodolo-
gies. Principally, how do you integrate an API into a 
legacy system? Software engineering methods such 
as building self-contained, modular code, creating 
unit and integration tests, and abstraction to hide 
complexity from the user are all in demand when 
building AI systems. This shift is evident based on 
hiring posts requiring a system integration back-
ground and how to use open-source tools such as 
LangChain and LlamaIndex to abstract complex 
prompts and agent calls.

Approximately 80 percent of industry gen AI use 
cases rely on semantic search, which involves 
searching an extensive collection of documents. A 
database system that can handle unstructured data 
is needed to support this. Not only that, but they 
need a database that can use algorithmic search 
methods to find documents efficiently. The ability to 
use vector databases to search this semantic space 
makes open-source tools such as Meta’s FAISS, 
ChromaDB, Pinecone, and Weaviate so powerful.4  
On the other hand, there are proprietary systems 
such as Postgres pgvector, Amazon’s Kendra, and 
whatever Google has renamed Vertex AI’s Matching 
Engine.

Since software engineering tries to abstract much 
of a system’s complexity out of a user’s hands, AI 
engineers try to copy this using tools like open-
source LangChain, LlamaIndex, or proprietary 
Microsoft Semantic Kernel. These tools allow AI 
engineers to use prompt templating to obfuscate 
the cumbersome prompting away from the user, 
enforce guardrails on the post-processing of the 
API model calls, use agents to create tasks to 
communicate with other systems and leverage 
built-in frameworks that help with document 
ingestion.

As we move to 2025, the AI engineer toolkit 
is still changing. While many companies have 
implemented internal products leveraging gen 
AI (e.g. document Q/A, chatbots, etc), few have 
deployed these to their external users at scale.

space for unstructured data. The AI engineer often 
pulls this data rather than the Data Engineer in this 
new AI team environment. Building on this, the AI 
engineer needs to be proficient in vector databases 
where retrieval of unstructured data is influenced not 
by an index but by an algorithm.3  Again, paradigm 
shift alert!

What about infrastructure?

The ML team relies on the role of the MLOps en-
gineer to orchestrate and define the pipelining and 
deployment along DevOps best practices. There 
has been some overlap in the gen AI world, partic-
ularly around LLMs. Whereas the MLOps commu-
nity has set standards followed by traditional ML 
deployments, the AI engineering community does 
not. This practice has numerous names, from LL-
MOps to GenOps to AIOps. From firm to firm, these 
structured methods of AI deployment vary and need 
to be in sync. More often than not, these terms are 
veneers for a practice that the AI community is still 
figuring out. While there are core principles of the 
DevOps community that can be practiced, the par-
adigm shift from ML to AI teams encapsulates how 
these systems are deployed. 

So, is an AI engineer just a glorified API call 
machine?

The AI and ML community is familiar with the 

famous screwups of treating an AI team as a 

lone software engineer. Chevrolet of Watsonville 

selling Chevy Tahoes for a dollar or consulting 

chatbots telling the client what a terrible product 

they sell is. Many of these are not far from the 

consequences of Microsoft’s 2016 flop in their 

Tay chatbot release. Proper engineering of the 

AI system will require a profound understanding 

of various open-source platforms, guardrails to 

reduce incorrect or misleading information and 

manipulation of output, storage mechanisms 

that can query unstructured data, and means to 

version control changes to the platform.

 
What skills do AI teams use?

The software engineer toolkit is the real hero for AI 
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https://www.autoevolution.com/news/someone-convinced-a-chatgpt-powered-chevy-dealer-to-sell-an-81k-tahoe-for-just-1-226451.html
https://time.com/6564726/ai-chatbot-dpd-curses-criticizes-company/
https://time.com/6564726/ai-chatbot-dpd-curses-criticizes-company/
https://en.wikipedia.org/wiki/Tay_(chatbot)


AI teams will increasingly prioritize model evalu-
ation, validation, and product management over 
simple use case identification. Many companies 
have developed extensive lists of gen AI use 
cases; those efforts will only be worthwhile if 
pushed to a deployable infrastructure. Rigorous 
model evaluation will be essential to earn client 
trust to integrate gen AI systems into byzantine 
enterprise infrastructure (medical providers, 
hospitals, law firms, etc). Proper channels and 
orchestration of the AI engineering team will rely 
on product managers who live and breathe the 
AI engineer toolkit. 2025 will be an exciting time 
as companies face board resistance to new gen 
AI initiatives, demanding a return on the initial 
investment many of their vendors have promised. 
Given these challenges, the latest AI team will 
further separate from their legacy ML teams. •

This is primarily limited by a lack of trust by the 
company in the model’s output. Having a grocery 
store chatbot release medical information when 
being asked about a recipe involving a hot stove  
is just too big of a risk for many companies to 
swallow. 

To combat this, many AI engineering teams are 
hiring AI engineers with a background in model  
evaluation. AI engineers have found that relying  
on foundation model evaluation benchmarks re-
leased by Open AI, Anthropic, AI21, Meta, etc,  
does little once that data is “trained” on their 
internal documents. In fact, most evaluation 
benchmarks go out the window when tailored 
to a company’s data. 

So, what does the future outlook look like?
As the initial hype surrounding gen AI subsides, 

3 Most vector databases use an algorithm in two places: before ingestion and for semantic retrieval. To convert text or images into searchable storage, they need to go through an 
embedding process. This is where an algorithm (shallow neural network based such as Word2Vec) converts inputs to an array of numbers. These numbers are then ingested into the 
vector database. When a query is issued, an algorithm (ie, ANNOY) searches the database to retrieve the embeddings. 

4 The vector database is where the AI team will be pointing their queries. CV and Gen AI require algorithms to assist in storing unstructured data (text, images, sound, videos) into 
an n-dimensional space that can hold data as a representation rather than an index, as we see in structured data storage. These representations are created using algorithms called 
embeddings, which use a shallow neural network to encode and map data to vector space. Once in vector space, these embeddings represent the location of the data. At the moment 
of query, the AI engineer can create a search process, typically with a lightweight algorithm or trigonometric principles like Cosine Similarity, to retrieve the embeddings and associate it 
with its true data. Open-source tools like ChromasDB, Pinecone, and FAISS give AI engineers ample resources to experiment and build.
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* Special thanks to Scott Tarlow and Kevin Coyle, contributing editors to this article.
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