
The New AI Team:
A Departure from ML
Teams
Unlocking New Possibilities for Innovation and Impact

Cover Image
8.5 x 4.54

Nicholas Beaudoin, Caltech CTME *

October 2024

unprecedented computational speeds. The drive to-
wards APIs as the central point of algorithmic magic
was a paradigm shift for ML engineers. Before
ChatGPT and Open AI’s GPT 3.5 model release, ML
engineers were guided by traditional ML practices.
These typically involved rigorous data preprocess-
ing, model creation through algorithmic selection,
parameter initialization, hyperparameter tuning, and
performance evaluation (outside computer vision
use cases). After November 2022, this all changed.

Winter 2022 was a curious time for ML teams. Most
teams tried to deconstruct the ChatGPT interface
for their use cases and make sense of the GPT API
calls. Others binged on YouTube tutorials to under-
stand the Transformer model and attention-based
modeling approach. Others read new gen AI model
development releases on Arxiv.org and played with
various LangChain and OpenAI tutorials. Outside
the ML community, only some individuals in man-
agement took heed of what was about to happen.

Enter the Hype Machine

In the spring of 2023, the marketing machine took
over. Companies like Google began to espouse
their managed gen AI solutions in Vertex AI. Am-
azon soon followed suit by implementing its own
gen AI management platform, Bedrock. Azure
decided to buy their way in with a partnership with
Open AI. Suddenly, every company asked them-
selves one question: “How can I leverage large lan-
guage models (LLMs) to increase revenue?” This
was followed by the familiar chime of consultant
pitches offering slide decks of humanoid robots to
display what customers wanted to see. Every way
you looked, the title “Data Scientist” was replaced
with “Gen AI” on LinkedIn.

Behind the scenes, hiring teams scrambled. Strate-
gic AI hires moved budgets away from ML projects
into anything that said gen AI. The core focal point

The ML/AI Shift

Over the past two years, we have observed
a significant transformation in companies’
deployment of machine learning products.
What was once known as machine learning
(ML) is now frequently termed artificial
intelligence (AI), a shift that has not gone
unnoticed by engineering teams. Almost
overnight, data scientists and ML engineers
updated their LinkedIn profiles to reflect their
new titles as “AI engineers.”1 Executives and
hiring managers are increasingly grappling
with the rapid evolution of AI development,
particularly generative AI (gen AI) and the
specialized skills it demands. This article aims
to unravel these complexities, equipping
decision-makers with the necessary insights
to make strategic, informed AI hires.

What is the Difference Between ML and
AI Teams?

The transition from ML team to AI team has been
bubbling under the surface for some time. The
release of ChatGPT instigated a coup in budget
allocation between traditional ML engagements
and investigative AI projects. The impact was im-
mediate and far-reaching. Companies began to run
POCs/POVs (proof of concept/value) to demon-
strate the feasibility of harnessing pre-trained
OpenAI GPT API model calls into their enterprise
systems. However, as these POCs and demos
progressed, it quickly became apparent that a new
set of technical skills was required to bring these
models to deployment.

The pivotal moment occurred following Google’s
2017 seminal paper, Attention Is All You Need.
After 2017, large language models became acces-
sible via API calls, enabling the processing of vast
amounts of data through transformer models at

1 This article defines ML teams in the context of traditional ML projects. These may include fraud detection, forecasting, anomaly detection, basic NLP tasks, and derivatives of deep
neural networks. However, the scope is more comprehensive than these projects alone. References to transfer learning on an ML team imply downloading the weights of a pre-trained
model for a new domain use case. In contrast, the AI team is represented as those who work with pre-trained algorithms via API connections to the hosting platform.

The New AI Team 1

team on AWS SageMaker or Google’s Vertex AI.
Some have a rough implementation of MLOps
where proper CI/CD practices are enforced to
reduce the clutter around GitHub PRs. Even in the
MLOps world, there are various levels of maturity.
(Cloud Architecture Center: Automation pipelines in
machine learning)

How Have Things Changed?

Modern AI systems, notably gen AI, rely on pre-
trained algorithms called “foundation models”
accessed via an API. Unless your company has
tens of millions of dollars and access to a world-
class collection of documents, **cough cough**
Bloomberg **cough cough**, you aren’t creating an
in-house foundation model. This is why the industry
has leaned so heavily on API calls to foundation
models. However, after the API call, companies are
flummoxed by an inability to provide the right tools
to integrate the API into a deployable use case.

Scalable ML deployments are centered around
the ML engineer and coordination with the MLOps
solutions architect (or engineer). In contrast, AI
system deployment in computer vision or gen AI
focuses on individuals who can deploy and scale an
API connection. Rather than building ML algorithms,
these new AI teams can focus on building appli-
cations and workflows powered by the API. These
new AI engineers must know the ins and outs of
open-source tools such as LangChain, LlamaIndex,
or Semantic Kernel. They are called to orchestrate a
dance between prompts, agents, and service calls,
wrapping them into a Dockerized package ready for
shipment.

The AI engineer’s new domain focuses on software
engineering, specifically how to integrate various
open and closed-source systems. Whereas the
ML engineer works with structured data (mostly)
and relies on the data engineer to query and pull
data, the AI engineer needs to leverage a storage

moved from “How do I create an algorithm that can
predict this thing?” to “How can I borrow an algo-
rithm that can generate this thing?” The paradigm
shifted, and AI teams became the champions of
executive hiring decision-making.

How Have Things Worked Historically?

So, what is involved in an AI team, and how does
it differ from how we used to hire ML teams? As
previously stated, the ML team is structured around
creating a well-tuned algorithm that can generalize
about future scenarios, be it making predictions
about revenue, movie recommendations, or whether
this image is a hot dog. ML engineering has been
the purview of deep expertise in creating an
algorithm with a low error rate.

Traditionally, Data Engineers support ML teams
and move data from one place to another, ensure
its validity and structure, and help maintain
a steady flow of ones and zeros into the algorithm.
The Data Scientist creates data narratives based
on statistical principles to inform the model-build-
ing process, engineer new informative features,
and work hand-in-hand with the ML engineer. The
ML engineer takes those features and builds a
generalized model of the specified environment.
Finally, the ML Operations (MLOps) Engineer
ensures that the model is deployable and scalable
and has the necessary pipelines to automate any
changes that need to happen in production.2

However, not all companies have this level of cor-
porate drive or engineering community cohesion to
adopt new technologies. At the same time, many
companies don’t have the data foundations even
to begin looking at AI solutions. The main point
is companies are at different levels of an AI/ML
maturity curve. Some are merely leveraging Jupyter
Notebooks on a local machine. Others are spinning
up a managed ML environment. Some are making
these managed AI services accessible to the entire

The New AI Team 2

2 Not all companies have the resources to deploy open-source solutions tailored to their specific use case. In my experience, I have seen companies with data science teams in the
double digits effectively coordinate shared features with open-source feature stores, create reproducible model registries while leveraging multiple cloud services, and create adoption
frameworks that drew these various data science and ML teams to follow this new tool. Uber’s Michelangelo 3.0 is probably the most valiant effort publicly written about on their
engineering blog.

https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://www.bloomberg.com/company/press/bloomberggpt-50-billion-parameter-llm-tuned-finance/
http://Uber’s Michelangelo 3.0

engineers, which is why most AI engineers come
from a heavy software engineering background. As
discussed, the switch from building ML models to
calling an API for a pre-trained model has driven AI
teams to adopt software engineering methodolo-
gies. Principally, how do you integrate an API into a
legacy system? Software engineering methods such
as building self-contained, modular code, creating
unit and integration tests, and abstraction to hide
complexity from the user are all in demand when
building AI systems. This shift is evident based on
hiring posts requiring a system integration back-
ground and how to use open-source tools such as
LangChain and LlamaIndex to abstract complex
prompts and agent calls.

Approximately 80 percent of industry gen AI use
cases rely on semantic search, which involves
searching an extensive collection of documents. A
database system that can handle unstructured data
is needed to support this. Not only that, but they
need a database that can use algorithmic search
methods to find documents efficiently. The ability to
use vector databases to search this semantic space
makes open-source tools such as Meta’s FAISS,
ChromaDB, Pinecone, and Weaviate so powerful.4
On the other hand, there are proprietary systems
such as Postgres pgvector, Amazon’s Kendra, and
whatever Google has renamed Vertex AI’s Matching
Engine.

Since software engineering tries to abstract much
of a system’s complexity out of a user’s hands, AI
engineers try to copy this using tools like open-
source LangChain, LlamaIndex, or proprietary
Microsoft Semantic Kernel. These tools allow AI
engineers to use prompt templating to obfuscate
the cumbersome prompting away from the user,
enforce guardrails on the post-processing of the
API model calls, use agents to create tasks to
communicate with other systems and leverage
built-in frameworks that help with document
ingestion.

As we move to 2025, the AI engineer toolkit
is still changing. While many companies have
implemented internal products leveraging gen
AI (e.g. document Q/A, chatbots, etc), few have
deployed these to their external users at scale.

space for unstructured data. The AI engineer often
pulls this data rather than the Data Engineer in this
new AI team environment. Building on this, the AI
engineer needs to be proficient in vector databases
where retrieval of unstructured data is influenced not
by an index but by an algorithm.3 Again, paradigm
shift alert!

What about infrastructure?

The ML team relies on the role of the MLOps en-
gineer to orchestrate and define the pipelining and
deployment along DevOps best practices. There
has been some overlap in the gen AI world, partic-
ularly around LLMs. Whereas the MLOps commu-
nity has set standards followed by traditional ML
deployments, the AI engineering community does
not. This practice has numerous names, from LL-
MOps to GenOps to AIOps. From firm to firm, these
structured methods of AI deployment vary and need
to be in sync. More often than not, these terms are
veneers for a practice that the AI community is still
figuring out. While there are core principles of the
DevOps community that can be practiced, the par-
adigm shift from ML to AI teams encapsulates how
these systems are deployed.

So, is an AI engineer just a glorified API call
machine?

The AI and ML community is familiar with the

famous screwups of treating an AI team as a

lone software engineer. Chevrolet of Watsonville

selling Chevy Tahoes for a dollar or consulting

chatbots telling the client what a terrible product

they sell is. Many of these are not far from the

consequences of Microsoft’s 2016 flop in their

Tay chatbot release. Proper engineering of the

AI system will require a profound understanding

of various open-source platforms, guardrails to

reduce incorrect or misleading information and

manipulation of output, storage mechanisms

that can query unstructured data, and means to

version control changes to the platform.

What skills do AI teams use?

The software engineer toolkit is the real hero for AI

The New AI Team 3

https://www.autoevolution.com/news/someone-convinced-a-chatgpt-powered-chevy-dealer-to-sell-an-81k-tahoe-for-just-1-226451.html
https://time.com/6564726/ai-chatbot-dpd-curses-criticizes-company/
https://time.com/6564726/ai-chatbot-dpd-curses-criticizes-company/
https://en.wikipedia.org/wiki/Tay_(chatbot)

AI teams will increasingly prioritize model evalu-
ation, validation, and product management over
simple use case identification. Many companies
have developed extensive lists of gen AI use
cases; those efforts will only be worthwhile if
pushed to a deployable infrastructure. Rigorous
model evaluation will be essential to earn client
trust to integrate gen AI systems into byzantine
enterprise infrastructure (medical providers,
hospitals, law firms, etc). Proper channels and
orchestration of the AI engineering team will rely
on product managers who live and breathe the
AI engineer toolkit. 2025 will be an exciting time
as companies face board resistance to new gen
AI initiatives, demanding a return on the initial
investment many of their vendors have promised.
Given these challenges, the latest AI team will
further separate from their legacy ML teams. •

This is primarily limited by a lack of trust by the
company in the model’s output. Having a grocery
store chatbot release medical information when
being asked about a recipe involving a hot stove
is just too big of a risk for many companies to
swallow.

To combat this, many AI engineering teams are
hiring AI engineers with a background in model
evaluation. AI engineers have found that relying
on foundation model evaluation benchmarks re-
leased by Open AI, Anthropic, AI21, Meta, etc,
does little once that data is “trained” on their
internal documents. In fact, most evaluation
benchmarks go out the window when tailored
to a company’s data.

So, what does the future outlook look like?
As the initial hype surrounding gen AI subsides,

3 Most vector databases use an algorithm in two places: before ingestion and for semantic retrieval. To convert text or images into searchable storage, they need to go through an
embedding process. This is where an algorithm (shallow neural network based such as Word2Vec) converts inputs to an array of numbers. These numbers are then ingested into the
vector database. When a query is issued, an algorithm (ie, ANNOY) searches the database to retrieve the embeddings.

4 The vector database is where the AI team will be pointing their queries. CV and Gen AI require algorithms to assist in storing unstructured data (text, images, sound, videos) into
an n-dimensional space that can hold data as a representation rather than an index, as we see in structured data storage. These representations are created using algorithms called
embeddings, which use a shallow neural network to encode and map data to vector space. Once in vector space, these embeddings represent the location of the data. At the moment
of query, the AI engineer can create a search process, typically with a lightweight algorithm or trigonometric principles like Cosine Similarity, to retrieve the embeddings and associate it
with its true data. Open-source tools like ChromasDB, Pinecone, and FAISS give AI engineers ample resources to experiment and build.

The New AI Team 4

* Special thanks to Scott Tarlow and Kevin Coyle, contributing editors to this article.

ABOUT CALTECH CTME
Caltech’s Center for Technology and Management Education (CTME) partners with technology-driven organiza-
tions to address their most critical challenges and harness their most significant opportunities through executive
education and professional development. As part of the California Institute of Technology, CTME combines the
power of world-class research with applied learning to develop custom professional development programs that
drive innovation and leadership at the intersection of technology and business.

Our programs are designed to equip professionals with cutting-edge skills and a forward-thinking mindset, empow-
ering them to solve today’s problems and define the future. CTME’s global team of expert instructors and industry
practitioners deliver a uniquely collaborative approach to education, leveraging Caltech’s pioneering spirit to help
clients transform their organizations and achieve lasting competitive advantage.

CTME offers a broad portfolio of professional education, including leadership development, digital transformation,
systems engineering, and data science. Our customizable programs ensure that learning is not only highly relevant
and impactful but also accessible and scalable for organizations around the world.

© Caltech 2024. All rights reserved.

For more information or to request permission to reprint, please contact Caltech CTME at execed@caltech.edu.

To explore our latest offerings or sign up for updates, visit ctme.caltech.edu. Follow Caltech CTME on LinkedIn.

mailto:execed%40caltech.edu.?subject=
http://ctme.caltech.edu

